How different are quantitative HCV RNA assays?

The Viral Hepatitis Congress
Frankfurt am Main, 27 September 2013

Christoph Sarrazin
J. W. Goethe-University Hospital
Frankfurt am Main, Germany
Disclosures

Consultancies / Advisory boards:
Abbott, BMS, Boehringer-Ingelheim, Gilead, Janssen, Merck/MSD, Novartis, Roche, Rottapharm, Vertex

Research support:
Abbott, Gilead, Janssen, Merck/MSD, Roche, Siemens

Speaker:
Abbott, Astra, BMS, Boehringer-Ingelheim, Gilead, InterMune, Janssen, Merck/MSD, Novartis, Qiagen, Roche, Siemens
Detection of HCV RNA

One target – different methods

Highly conserved area with little variation between different HCV genotypes, subtypes and isolates

5'NTR

Qualitative / quantitative detection of HCV RNA by different methods:

- real-time RT-PCR
- TMA
- bDNA
- conventional RT-PCR
- bDNA
- TaqMan probe
Commercially available HCV RNA assays

- **HCV RT artus™**
 - Qiagen (CE)

- **TMA**
 - Siemens (CE/FDA for TMA/bDNA CE for kPCR)

- **bDNA Versant™**
 - Siemens (CE/FDA)

- **kPCR**
 - Roche Diagnostics (CE/FDA)

- **Qual. Amplicor™ Real-time vs2 TaqMan™ RealTime HCV™**
 - Abbott (CE/FDA)
Characteristics of HCV RNA assays

High sensitivity

The lower detection limit of an HCV RNA assay is a statistical value which depends on the matrix and the HCV genotype.

<table>
<thead>
<tr>
<th>HCV RNA IU/ml</th>
<th>Detected (%)</th>
<th>LOD 15 IU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

95% hit probability

<table>
<thead>
<tr>
<th>HCV RNA IU/ml</th>
<th>Detected (%)</th>
<th>LOD 12 IU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
The lower detection limit of an HCV RNA assay is a statistical value which depends on the matrix and the HCV genotype.

Table 2: LOD confirmation by genotype using the CAP/CTM HCV test, v2.0, in plasma and serum matrices

<table>
<thead>
<tr>
<th>Matrix and genotype</th>
<th>5 IU/ml</th>
<th>15 IU/ml</th>
<th>45 IU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of valid replicates</td>
<td>No. of positives</td>
<td>Hit rate (%)</td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>63</td>
<td>45</td>
<td>71</td>
</tr>
<tr>
<td>1b</td>
<td>62</td>
<td>48</td>
<td>77</td>
</tr>
<tr>
<td>2a</td>
<td>63</td>
<td>47</td>
<td>75</td>
</tr>
<tr>
<td>2b</td>
<td>63</td>
<td>42</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>58</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>41</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>46</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>58</td>
<td>83</td>
</tr>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>63</td>
<td>44</td>
<td>70</td>
</tr>
<tr>
<td>1b</td>
<td>63</td>
<td>47</td>
<td>75</td>
</tr>
<tr>
<td>2a</td>
<td>63</td>
<td>43</td>
<td>68</td>
</tr>
<tr>
<td>2b</td>
<td>62</td>
<td>57</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>58</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>43</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>47</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>55</td>
<td>87</td>
</tr>
</tbody>
</table>

Zitzer et al., J Clin Microbiol 2013
Characteristics of HCV RNA assays

Linear amplification

Vermehren et al., J Clin Virol 2011
Characteristics of HCV RNA assays
Standardization to International Units (IU)

Differences for absolute quantification

Cobas TaqMan Roche vs bDNA Siemens
Sarrazin et al., J Clin Microbiol 2006

Cobas TaqMan Roche vs bDNA Siemens
Vermehren et al., J Clin Microbiol 2008

Cobas TaqMan Roche vs bDNA Siemens
Chevaliez et al., Hepatology 2007

Cobas TaqMan Roche vs bDNA Siemens
Sizmann et al., J Clin Virol 2007
Characteristics of HCV RNA assays
Clinically relevant differences between cutoffs and assays?

Baseline viral load
- Predictor of response (dual and triple therapies)
- Shortening treatment 16/24 weeks in GT2/3 & GT1 together with rapid virologic response (RVR) with dual combination therapy

Determination of rapid virologic response for shortening of treatment duration
- Importance for conventional PEG-based triple therapies
- Very early virologic response potentially used to tailor future DAA combination treatments?
Characteristics of HCV RNA assays

Baseline viral load

Classification of low versus high baseline viral load
(< versus ≥ 800 000 IU/ml, n=189 HCV GT1 infected patients)

Discrepancy (%)

Weich et al., EASL 2011
Determination of treatment duration
PI-based Conventional Triple Therapies

Telaprevir
- HCV-RNA undetectable
- 12W-TV R
- BL week 4
- week 12
- week 24

Boceprevir
- HCV-RNA undetectable
- 4W-LI
- 24W-BOC
- BL week 4
- week 8
- week 24
- week 28

Study Time Duration SVR

Boceprevir SPRINT-1
- <25 IU/ml wk. 8
- 28 wks.
- 5/13 (38%)
- 48 wks.
- 9/12 (75%)
- negative wk. 8
- 28 wks.
- 53/62 (85%)
- 48 wks.
- 62/66 (94%)

Harrington et al., Hepatology 2011

- Undetectable HCV RNA at week 4 of triple therapy is required for shortening treatment duration to 24 weeks

Simeprevir
- HCV-RNA undetectable
- 12W-TV R
- BL week 4
- week 12
- week 24

Faldaprevir
- HCV-RNA undetectable
- 12W-TV R
- BL week 4
- week 12
- week 24
Determination of treatment duration
Difference between undetectable and <25 IU/ml

Telaprevir
Undetectable at week 4 of triple therapy

Boceprevir

Simeprevir
<25 IU/ml at week 4 of triple therapy

Faldaprevir

-Jacobson et al.; Sherman et al.; Poordad et al.; all NEJM 2011
-Manns et al.; Jacobson et al.; Ferenci et al.; all EASL 2013
Determination of treatment duration
Difference between undetectable and <25 IU/ml

- 73-75% on SMV / FDV triple therapy had undetectable HCV RNA at week 4
- 13-15% on SMV / FDV triple therapy had detectable HCV RNA <25 IU/ml at week 4
- SVR rates after 24 weeks of treatment are significantly higher in patients with undetectable versus <25 IU/ml HCV RNA at week 4 (93% vs. 69-75%)
Determination of treatment duration
Differences between HCV RNA assays

HCV RNA testing at week 4 of treatment by Roche TaqMan HPS and Abbott realtime HCV assays during HCV NS3 Protease-Inhibitor Triple Therapy with Simeprevir (Pillar Study), n=261

Roche TaqMan (HPS)
- Not detected: 75.5%
- <25 IU/mL detected: 16.5%
- ≥25 IU/mL: 8.0%

Abbott RealTime (ART)
- Not detected: 49.4%
- <12 IU/mL detected: 79.7%
- ≥12 and <25 IU/mL: 30.3%
- ≥25 IU/mL: 7.7%
- ≥25 IU/mL: 12.6%

Fevery et al. J Hepatology 56, Suppl 2, 2012, S26
Determination of treatment duration
Difference between assays: Real world triple therapy

Comparative testing with Roche TaqMan (CAP) and Abbott RealTime (ART) of week 4 and 12 samples of HCV genotype 1 patients undergoing Telaprevir triple therapy (Frankfurt and Stockholm)

Comparison of CAP and ART at week 4 and 12

Cobas TaqMan (CAP) used as primary assay for response guided therapy in FFM and Stockholm
Patients who achieved eRVR according to CAP and ART (FFM/Stockholm)

- CAP: 67% eRVR, 33% no eRVR
- ART: 63% eRVR, 37% no eRVR

Treatment outcome according to week 4 HCV RNA results (RGT according to CAP)*

- CAP not detected: 31/31 (100%) SVR, 1 BT
- ART not detected: 13/31 (42%) SVR, all SVR
- ART <12 positive: 15/31 (48%) SVR, all SVR
- ART quantifiable: 3/31 (10%) SVR, all SVR

*At week 12 HCV RNA was undetectable by CAP and ART in all patients.
**HCV RNA concentrations in 3 pts. with quantifiable viral load: 13, 13 and 15 IU/ml
Determination of treatment duration
Difference between assays: Real world triple therapy

Comparative testing with Abbott RealTime (ART) and Roche TaqMan (CAP) of week 4 and 12 samples of HCV genotype 1 patients undergoing Telaprevir triple therapy (Milan)

RealTime (ART) used as primary assay for response guided therapy in Milan
Determination of treatment duration
SOF IFN-containing and IFN-free treatment schedules

Potent DAA combination therapies
- Viral break-through is uncommon
- Very early viral kinetics for prediction of relapse / optimal treatment duration?

Osinusi et al., JAMA 2013; Jacobson et al., EASL / NEJM 2013
Determination of treatment duration

HCV RNA measurement during IFN-free DAA combo

PILOT Study

(ABT450r+ABT072+RBV GT1 CC naive, n=11)

<table>
<thead>
<tr>
<th>Time/Patient</th>
<th>502</th>
<th>504</th>
<th>551</th>
<th>553</th>
<th>555</th>
<th>557</th>
<th>505</th>
<th>520</th>
<th>655</th>
<th>661</th>
<th>610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk 1</td>
<td>86</td>
<td>333</td>
<td><25</td>
<td><25</td>
<td>160</td>
<td>82</td>
<td><25</td>
<td>190</td>
<td>112*</td>
<td>426</td>
<td>66</td>
</tr>
<tr>
<td>Wk 2</td>
<td><25*</td>
<td>38</td>
<td>0</td>
<td><25</td>
<td><25</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wk 3</td>
<td>0</td>
<td><25</td>
<td>0</td>
<td><25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wk 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wk 5</td>
<td>0</td>
</tr>
<tr>
<td>Wk 6</td>
<td>0</td>
</tr>
<tr>
<td>Wk 7</td>
<td>0</td>
</tr>
<tr>
<td>Wk 8</td>
<td>0</td>
</tr>
<tr>
<td>Wk 9</td>
<td>0</td>
</tr>
<tr>
<td>Wk 10</td>
<td>0</td>
</tr>
<tr>
<td>Wk 11</td>
<td>0</td>
</tr>
<tr>
<td>Wk 12</td>
<td>0</td>
</tr>
<tr>
<td>PTW 2</td>
<td>0</td>
</tr>
<tr>
<td>PTW 4</td>
<td>0</td>
</tr>
<tr>
<td>PTW 8</td>
<td>0</td>
</tr>
<tr>
<td>PTW 10</td>
<td>0</td>
</tr>
<tr>
<td>PTW12</td>
<td>0</td>
</tr>
<tr>
<td>PTW16</td>
<td>0</td>
</tr>
<tr>
<td>PTW24</td>
<td>0</td>
</tr>
<tr>
<td>PTW36</td>
<td>0</td>
</tr>
<tr>
<td>PTW48</td>
<td>0</td>
</tr>
</tbody>
</table>

Cloherty et al., APASL 2013

- HPS < LOD
- ART < 25 IU/ml
- HPS undetectable
- ART < 12 IU/ml
Summary

- Real-time PCR based methods for highly sensitive detection of HCV RNA and linear quantification
- Differences between assays for absolute quantification as well as lower limit of detection
- Determination of treatment duration in PI-based Triple Therapy (TVR, BOC, SMV, FDV):
 - Cobas TaqMan Assay: undetectable HCV RNA at week 4 of triple therapy (<25 IU/ml is associated with relapse)
 - RealTime HCV Assays: <12 IU/ml detectable or undetectable at week 4 of triple therapy
 - Other assays: no data so far
- IFN-free DAA combination therapies
 - Predictability of response by very early viral kinetics?